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What 1s a star?

The idea that stars are sell-gravitating gaseous bodies was introduced in theXIX
Century by Lane. Kelvin and Helmholtz. They suggested that stars should be
understood in terms of the equation of hvdrostatic equilibrium:

dP(r) GM (r)p(r) Hydrostatic Equilibrium

dr r2
where the pressure P is given by

Gas Pressure |
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Eddington proposed (1926):

I.Thermonuclear reactions are the source of energy in the stars
2. The outward pressure of radiation should be taken into account in the equation for
equilibrium.

d | pk1 +£”,1,4 _ GM
dr | pmy, 3 r o

Gravity

Fusion
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dL(r) = 4mrep.
dr

where [ is the mean free path of the photons. L the luminosity. and € the energy
generated per gram of material per unit time.
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What is a star?

Nonburning hydrogen

Hydrogen fusion.
Helium fusion

| Carbon fusion-. ,.

Neon fusion _

Magnesium _
TUSIOn




What 1s a star?

Overview of the solar processes

Turbulent
convection

Convection zone

Photosphere
Radiative
zone
Thermonuclear
reactions
Core
14.000.000 K
Sunspot
Prominence

Filament







What 1s a star?

Once the nuclear power of the star is exhausted. the contribution from the
radiation pressure decreases dramatically when the temperature diminishes. The
star then contracts until a new pressure helps to balance gravity attraction: the
degeneracy pressure ol the electrons. The equation of state for a degenerate gas
of electrons is:

Pre = ]\’/)4/3~

M43 GM?
D x ro

Since the radius cancels out, this relations can be satisfied by a unique mass:

he\® 1] 1
M =0.197 (”) | = =14 M,

G

m2 2
my | g

where i, 1s the mean molecular weight of the electrons. The result implies that a
completely degenerated star have this and only this mass. This limit was found
by Chandrasekhar (1931) and is known as the Chandrasekhar limit.




What 1s a star?

nearly pure nearly pure

hydrogen surface : neutral helium surface
helium

shell

carbon and
oxygen core

nearly pure exposed core of
ionized helium surface carbon and oxygen

rovssa
y




What 1s a star?

Fritz Zwicky
1898-1974

JANUARY 1S, 1934 PHYSICAL REVIEW

Proceedings
of the
American Physical Society

MINUTES OF THE StanFoxp MEENING, Drcruvwnre 1516, 1933

38, Supernovas and Coamic Rays. W. Dasor, Mr.  quitc ordinary stars of mass M<10* g, E,
Wilsow Observotory, Awn F. ZwiCKy, Celifermia Jnudilufe same ceder as M itsel. In the supernons pro
of Technology, —Supernovae Rare up in every stellar system salk ir smmikileted, [n addition the hypot
(nebula) once in several centuries. The lifetime of a super itsell that cosmiss rays gre produced by supernon
nova is about twenty days and its absolute beightness ag  that in every nebula oot supernova OCCurs eve
maximum may be as high a3 Mo~ =~ 14%_ The visible  years, the intensity of the cosmic rays to be
radiation L, of a supernava is about 10* times the radiation the earth should be of the order o=2 X107
of cur sun, that is, L,=3.78 X10¢ ergafeec, Calculations The abservational values are about #=3X
indicate that the total radistson, visible and invisible, iy #2c. [Millikan, Regener), With all reserve we
of the ceder L, = 1070, w378 X 104 erga/sec. The supes- view that supernovae represent the tran
nova therefore emits during its life a total energy cedinary stars into westron glors, which in thei
E,>10PL, =378 %109 ergs. ! supernovae imitally are comsist of extremely closely packed neutrans
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The end of stars
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A pair-instability supernova occurs
when pair production, the production of
free electrons and positrons in the
collision between atomic nuclei and
energetic gamma rays, reduces thermal
pressure inside a supermassive star's core.
This pressure drop leads to a partial
collapse, then greatly accelerated burning
in a runaway thermonuclear explosion
which blows the star completely apart

without leaving a black hole remnant
behind.

Pair-instability supernovae can only
happen in stars with a mass range from
around 130 to 250 solar masses and low
to moderate metallicity (low abundance of
elements other than hydrogen and helium,
a situation common in Population III
stars).

Pair-Instability Supernova vs.

200-solar-mass star

Core-Collapse (Type I1) Supernova

. 20-solar-mass star l

Photons exert

Core begins
fusing oxygen

N

outward pressure

=~ Gravity
exerts inword
pressure

Without photon

Core

Core is made of iron,
nuclear fusion ceases,
star begins to collapse.

I IGHES

tronsformed pressure, gravity
into motter tokes over, so the
ond ontimaotter star implodes
particles

Interior temperoture skyrockets,

igniting oll of the remaining
nucleor fuel, and the entire stor
explodes. No compact remnont
is formed.

The core rebounds violently,
creating o shock wave thot moves
outword ond blows the stor aport,
The core forms o neutron star or 0
black hole,

®© 2009 Sky & Telescope



Oppenheimer & Snyder (1939):
non-stopping collapse.

Collapse to what?

The answer 1s 1n General Relativity.
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Black holes

Albert Einstein John A. _Whﬁeeler



Letter
from Karl Schwarzschild to
Einstein, 22 December 1915

Schwarzschild 1s one of the
few astronomers who are
interested in Einstein's
General Theory of Relativity.
In December 1915, he is
based at the Russian front
line. However he finds the
opportunity to deduce the
first exact solution of
Einstein's field equations.
“As you see, the war is
friendly to me”, he writes.
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On the death of Karl Schwarzschild

When war was declared in 1914, Schwarzschild volunteered for the German
army and manned weather stations and calculated missile trajectories in
France, Belgium, and Russia. It was in Russia that he discovered and
published his well-known results in relativity as well as a derivation of the
Stark effect using the 'old' quantum mechanics. It was also in Russia that he
began to struggle with pemphigus, an autoimmune disease where the body

starts attacking its own cells. He was sent home, where he died on May 11,
1916 at the age of 42.




Vacuum spherically symmetric solution

to Einstein equations.

Karl Schwarzschild (1916)

The first exact solution of Einstein field equations was found by Karl Schwarzschild
in 1916. This solution describes the geometry of space-time outside a spherically
svinmetric matter distribution,

The most general spherically symmetric metric is:

ds® = a(r, t)dt®> — B(r, t)dr? — ~(r, )dQ? — &(r, t)drdt,

N9 9 . ) D) - . . . 1
where dQ= = df* + sin“fdop=. We are using spherical polar coordinates. The

(
metric (133) is invariant under rotations (isotropic).




The invariance group of
general relativity is formed
by the group of general
transformations of
coordinates.This yields 4
degrees of freedom, two of
which have been used when
adopting spherical
coordinates. With the two
available degrees of
freedom we can freely
choose two metric
coefficients, whereas the
other two are determined by
Einstein’s equations.

Schwarzschild solution.

Standard gauge.

2

ds® = P A(r, t)dt* — B(r, t)dr® — r2dQ?.

Svuchronous gauge,

2

ds? = 2dt* — F2(r, t)dr® — R*(r, t)dQ?.

Isotropic gauge.

ds® = 2H?(r, t)dt* — K?(r. t) [(]1'2 + 72 (7, t)dSY

Co-moving gauge.

ds® = AW?2(r, t)dt®> = U(r, t)dr* — V(r, t)dSY’

Static




Schwarzschild solution.

FZV — 3.(,//30 (,(;)1/.(_/,();1 + (-)p.(_/pz/ — dp!lwx )

Ry, = 9,19, — 3,17, + L T7 —T0 17 =0
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Schwarzschild solution.

The metric coefhicients are:

Joo

—r?sin® 0,
L/A(r),
—1/B(r).
—1/r2,

14 /7.2 .2
—1/7r"sin” 0.




Schwarzschild solution.

Then. only nine of the 40 independent connection coeflicients are different
from zero. They are:

—7r/B,
—sinf cos b,
A'/(2B),
—(rsin® /B),
L/

L/r,

cotf..




Schwarzschild solution.

Replacing in the expression for R,

A A B
1B (T B

A B

T g
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RQQ sin“ 4.




The Einstein field equations for the region ol empty space then become:
Rog = R11 = Ry =0

(the fourth equation has no additional information). Multiplving the first equa-
tion by B/A and adding the result to the second equation, we get:

A'B+AB =0.

from which AB = constant. We can write then B = oA~ Going to the third
equation and replacing B we obtain: A +7rA" = a. or:

d(rA)

= Q.
dr

The solution of this equation is:

Alr) =« (1 - f—) :

with k& another integration constant. For B we get:

A —1
B=(1+5) .
N




Schwarzschild solution.

If now we consider the Newtonian limit:

A(r) 2
.') — -|- _I_ .') b ]
(& -
with @ the Newtonian gravitational potential: & = —GM/r. we can conclude
that

2GM

9
-

k=




Spherically symmetric black holes

The solution of Einstein’s equations for the vacuum region exterior to a spherical object of
mass M 1s:

w
- Proper time kﬂ

1201
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Structure of a Schwarzschild black hole

Gvent Horizon

schwarzschild radius
_2GM

RSch 2

C

singularity




Structure of a Schwarzschild black hole

ngoing null
congruence

Singularity




Structure of a Schwarzschild black hole




Structure of a Schwarzschild black hole

The singularity at the Schwarzschild radius 1s only apparent, since it can be removed
through a coordinate change. Let us consider, for instance, Eddignton-Finkelstein
coordinates:

r—2GM/c?
VIR UV = CI + ry.

Null rays satisfy dv=0. The new coordinate v can be used as a time coordinate. The
metric can be rewritten as:

re2

2GM
ds?* = (1 _ )dv2 —2drdv — r*d°*,

d2% =do? + sin? 0dp>.




Structure of a Schwarzschild black hole

g
A' L/ l[) ing ‘
sfar #ies of congs
i
”

The light cones (ll\lul/\l — ?'(tmm > 2M . NQ that no
timelike or null worldline can reach r > 2M huuu <

Event horizon in Schwarzschild spacetime



Collapse in Eddington-Finkelstein coordinates
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Embedding St embedding diagram the curvature of a two dimensional surface can be
viewed by placing it in a flat three-dimensional space. In general, these

diagrams come from the elimination of a third dimension in order to show the
spatial cross section at a given time of a solution to Einstein's equations

cross section
p : ) . STARS WITH THE SAME MASS, BUT DIFFERENT SIZES: HOW CURVED?
{if embedded in a 3 dimensional space) W : i BUE Ll
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Birkoff's theorem

If we consider the isotropic but not static line element.

D) 9
ds® = c¢* £

and substitute into the Einstein empty-space lield equations Ry, = 0 to obtain
the functions A(r, t) and B(r, t). the result would be exactly the same:

2
e

. 2GM
= )

and

2GJ[)‘1

2




Birkoff's theorem

The space-time geometry outside a general spherically symmetric matter
distribution is the Schwarzschild geometry.

Birkhoff’s theorem implies that strictly radial motions do not perturb the
spacetime metric. In particular, a pulsating star, if the pulsations are strictly
radial, does not produce gravitational waves.

The converse of Birkhoft’s theorem is not true, 1.e.,

If the region of space-time is described by the Schwarzschild metric, then
the matter distribution that is the source of the metric does not need to be
spherically symmetric.



Causal structure of space-time

Definition. A causal curve in a space-time (M, g, ) is a curve that is non
space-like, that is, piecewise either time-like or null (light-like).

We say that a given space-time (M, gy ) is time-orientable if we can define
over M a smooth non-vanishing time-like vector field.

Definition. If (M, gy ) is a time-orientable space-time, then Vp € M, the
causal future of p, denoted J7 (p), is defined by:

J(p) = {q € M|3 a future — directed causal curve from pto q}.




Causal structure of space-time

Similarly,

Definition. If (M, g,,) is a time-orientable space-time, then Vp € M, the
causal past of p, denoted J (p), is defined by:

J (p) = {q € M|3 a past — directed causal curve from pto q}.

inaccessible to Q

causal diamond inaccessible

inaccessible to P




Causal structure of space-time

The causal future and past of any set S C M are given by:

JHS) = J7(P)

peS

and,

J7(S) =] J ().
peES
A set S is said achronal if no two points of S are time-like related. A Cauchy
surface is an achronal surface such that every non space-like curve in M crosses
it once, and only once, S. A space-time (M, g,,) is globally hyperbolic if it
admits a space-like hypersurface S C M which is a Cauchy surface for M.



Causal structure of space-time

spacelike
ypersurface

Spacetime

S is called Cauchy surface if every world-line (timelike curve) without
endpoint intersects once and only once the hypersurface S.

If S and S' are a Cauchy surface, the events on S' are determined

by those on S, if the law governing this spacetime is deterministic.
General relativity allows non-existence of Cauchy surfaces in certain
cases.







Causal structure of space-time

Causal relations are invariant under conformal transformations of the metric.
In this way, the space-times (M, g,,,) and (M, g,, ), where g, = Q?g,,,,, with Q
a non-zero C" function, have the same causal structure.



Formal definition of black hole

Let us now consider a space-time where all null geodesics that start in a
region J~ end at J . Then, such a space-time, (M, g,,), is said to contain a
black hole if M is not contained in J~(J 7). In other words, there is a region
from where no null geodesic can reach the asymptotic flatfuture space-time, or,
equivalently, there is a region of M that is causally disconnected from the global
future. The black hole region, BH, of such space-time is BH = [M — J~(J )],
and the boundary of BH in M, H = J(J) (M, is the event horizon



Formal definition of black hole

A black hole is conceived as a space-time region, i.e. what characterizes the
black hole is its metric and, consequently, its curvature.

What is peculiar of this space-time region is that it is causally disconnected
from the rest of the space-time: no events in this region can make any influence
on events outside the region. Hence the name of the boundary, event horizon:
events inside the black hole are separated from events in the global external
future of space-time. The events in the black hole, nonetheless, as all events,
are causally determined by past events. A black hole does not represent a
breakdown of classical causality.
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Conformal diagrams

y “-\11}
[ = constant

# \,
/| J /—r = constant




Penrose-Carter diagram

TIMELIKE
INFINITY

"LIGHTLIKE
INFINITY"

The conformal factor is
chosen such that the
entire infinite spacetime

) . & X SPACELIKE
1s transformed into a ‘ MEZ INFINITY

Penrose diagram of finite
size.

t tv)=xxt : . :
Minkowski space-time



Formal definition of black hole

Singularity (r = 0)




Penrose-Carter diagram

Schwarzschild space-time




Kruskal-Szekeres coordinates
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Kruskal-Szekeres coordinates

The line element in the Kruskal-Szekeres coordinates is completely regular.
except at 7 = 0:

r

4"%(‘.11\\" —~ 2 2 2 1012
= — T eTsehw (dv° — du®) — r=df)”-.

r

The curves at 7 = constant are hvperbolic and satisfv:

/9
9 D) r AN ——
U — v° = — _l ¢ "Schw |
I'Schw

the curves at £ = constant are straight lines that pass through the origin:

i ct
— tanh ——.
v ‘

: " << T'Schw
2T'Schw
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Kruskal-Szekeres coordinates
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Horizons in General Relativity

A null geodesic is a curve on the spacetime manifold which has null
tangent [, (i.e., [2[, = 0 ) and satisfies the geodesic equation

I’V = 0

The 2-metric orthogonal to /, is is the projection tensor onto the hyperplanes
orthogonal to the null direction.

hap = gap + lanp + lpng .
hop 1 = hy I = 0,

h, =2,

he.h¢, = h%, .




Congruence

Let O be an open region of the spacetime manifold; a congruence of
curves iIn O 1s a family of curves such that through every point of O
passes one and only one curve of the family. The tangents to these curves
define a vector field on O (and, conversely, every continuous vector field
in O generates a congruence of curves, those to which the vector field 1s
tangent). If the field of tangents 1s smooth, we say that the congruence is
smooth. In particular, we can consider a congruence of null geodesics
with tangents /, in the open region O.

t =constant
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Expansion

Shear

Vorticity




The expansion, shear, and vorticity tensors are purely transversal:

Isotropic Expansion

~ Q~©
Areaat) ,

Areaat A,
Areaat) ,

_Note similarity with

(i) Elastic deformations
(i) Fluid flow

Areaat A |

Areaat A ,

The propagation of the expansion along a null geodesics ruled by the
Raychaudhuri equation:

Equation of Raychaudhuri
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Ingoing rays
converging

Trapped surfaces <=/
v SN

outgoing rays m;igomg 1ays
diverging verging

A normal surface corresponds to Nl ciomnil2 serEace

ingoing and outgoing
6> 0 and 6, < 0 oo

A trapped surface corresponds to: M

9 <0 and 6, < 0. s

In this case, the outgoing, in addition to the
usual ingoing, future-directed null rays are
converging instead of diverging—Ilight
propagating outward is dragged back by
strong gravity.




Black hole

Trapped surfaces seem to
be essential features in
the black hole concept
and notions of “horizon”
of practical utility will be

identified with the
boundaries of spacetime
regions which contain
trapped surfaces.




Rindler horizons ds® = —(azx)’dt® + dz* + dy* + d2°

A family of hyperbolae parametrized by the constant acceleration a are called
hyperbolic motions or worldlines of Rindler observers.

Rindler Horizons for Accelerated Observers in Minkowski Spacetime

The location of the event
horizon depends on the
uniformly accelerated
observer: different accelerated
observers will determine
different acceleration horizons.




Event horizons

An event horizon 1s a connected component of the boundary of the causal
past of future null infinity.

This definition embodies the most peculiar feature of a black hole, 1.e., the
horizon 1s a causal boundary which separates a region from which nothing
can come out to reach a distant observer from a region in which signals can
be sent out and eventually arrive to this observer. An event horizon is
generated by the null geodesics which fail to reach infinity and, therefore
(provided that it is smooth) is always a null hypersurface .

In black hole research and in astrophysics the concept of event horizon is
implicitly taken to define the concept of static or stationary black hole itself.



Since to define and locate an event horizon one must know all the
future history of spacetime (one must know all the geodesics which
do reach null infinity and, tracing them back, the boundary of the
region from which they originate), an event horizon is a globally
defined concept. To state that an event horizon has formed requires
knowledge of the spacetime outside our future light cone, which is
impossible to achieve (unless, of course, the spacetime is stationary
and the black hole has existed forever—then nothing changes and by
knowing the state of the world now one knows it forever).



Because of its global nature, an event horizon is not a practical
notion to work with, and 1t is nearly impossible to locate
precisely an event horizon in a general dynamical situation.

In practice, astrophysical black holes did not exist forever but
formed in a highly dynamical process of gravitational collapse.
Numerical relativity codes are written to follow a gravitational
collapse, the merger of a binary system, or other dynamical
situations ending in a black hole, and they crash at some point. It
is clearly impossible to follow the evolution of a system all the
way to future null infinity.

Numerical relativists routinely use marginally trapped surfaces as
proxies for event horizons.



Apparent horizons

A future apparent horizon is the closure of a surface (usually a 3-surface)
which 1s foliated by marginal surfaces. The future apparent horizon is a
surface defined by the conditions on the time slicings

These are the expansions of the future-directed outgoing and ingoing null
geodesic congruences, respectively. The conditions tell us that the future-
pointing outgoing null geodesics momentarily stop propagating outward.

Apparent horizons are defined quasi-locally and do not refer to the global
causal structure of spacetime—they don’t have the teleological nature of event
horizons.



Apparent horizons are, in general, distinct from event horizons: for example,
during the spherical collapse of uncharged matter, an event horizon forms
before the apparent horizon does and these two horizons approach each other
until they eventually coincide as the final static state is reached.

spacetime
singularity

event
horizon

outgoing
null geodesics
A AR

\ 1
N \ A\ A
“\ \ \
\-_ - Y

apparent
horizon




Killing horizons

A Killing vector field k¢ is one that satisfies the Killing equation

V,kp + Vpk, = 0.

A Killing vector describes a symmetry of spacetime in a geometric,
coordinate-invariant way.

A Killing horizon H of the spacetime (M, gus) 1is a null hyper-surface which
1s everywhere tangent to a Killing vector field &, which becomes null, i<k. =0,
on H. This Killing vector field is time-like, k<k. < 0, 1n a spacetime region
which has H as boundary. Stationary event horizons in General Relativity are
usually Killing horizons for a suitably chosen Killing vector.



Particles already seen

Particles not yet seen

Cosmological horizon

It

The cosmological or particle horizon at time 7 is a sphere centered on the co-
moving observer at » =0 and with radius:

todt | Lodr
£) = R (r)=(r)/ — .
n(t) /0 a(t) PH a o a(f)

The particle horizon contains every particle signal that has reached the
observer between the time of the Big Bang =0 and the time 7.



Horizon problem

age of universe

We can see gas at
points A and B before
2 they knew about each
),

S

-0 ---- 500,000 yr

distance

Gas at point A has received signals Gas at point B has received signals
from this part of the universe. from this part of the universe.
Copyright @ Addison Wesley.




Kerr black holes

The Kerr metric corresponds to rotating body of mass M and
angular momentum per unit mass a.

Geedt® + 2gedtdd — goedd® — A" dr® — £d6*
(¢* —2GMrE~1)

2GMac™ Y rsin® @

[(r? + a2c™2)? — a2~ 2A sin? 6)E ! sin% @

2 -+ a2c=2cos?d

2 - 2 -2
r“ —2GMe “r+a‘c “.

The horizon. the surface which cannot be crossed outward, is determined by
the condition gy — oo (A = 0). It lies at r = rp where

]

rh=GMc™2 + [((74\1'1?_2)2 — Q'ZC-Q]I,.__

There is also an inner horizon: = GMc? — [(GMc™?)? - a




limit a — 0.




. . . . . . 2 2 2 2 2 2 . .
This is indeed the Minkowski metric ds® = ¢“ dt” — dx~—dy~ —dz*. but written in
- . . . . o)
terms of spatial coordinates (r, 6, ¢) that are related to Cartesian coordinates by~

Vv r2+a?sinf cos ¢,

vV r2+a®sinf sin ¢,

rcosé@.

where r >0, 0<f<mand 0 < <27




2 4damsin® 6 2m’\
dr? = (1 - L"’) dt?+ ————dtd¢ - (1 + %n) dr?—r2d® —r2 sin? 0dg”.

r

Spacetime rotates away from the black hole.

This 1s called the “dragging of inertial frames”






A schematic illustration of the dragging of inertial frames around

a rotating source.



Features of Kerr metric

e It is stationary: it does not depend explicitly on time.

e It is amisymmetric: it does not depend explicitly on ¢.
e It is not static: it is not invariant for time reversal t — —t.

e It is invariant for simultaneous inversion of ¢ and ¢,

t —- —t
QD_)_Qb,

as can be expected: the time reversal of a rotating object pro-
duces an object which rotates in the opposite direction.

e In the limit » — oo, the Kerr metric reduces to Minkowski
metric in polar coordinates; then, the Kerr spacetime is asymp-
totically flat.

The Kerr metric 1s the unique stationary axisymmetric vacuum solution
(Carter-Robinson theorem).



Horizons of the Kerr metric

The horizon, the surface which cannot be crossed outward, is determined by the

condition g, — 0o (A =0). It lies at r = " where

g it [(GMc_z)2 — azc_2]1/2_

The second, the inner horizon, is located at:

— [(GMc_z)2 — azc_z]l/Z.

axis of rotation
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outer Inner
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The Kerr singularity
An essential singularity occurs when 8t —>

This happens in Kerr metric if

This condition implies:
Such a condition is fulfilled only by and

This translates in Cartesian coordinates to:




The Kerr singularity

The singularity is a ring of radius ac™! on the equatorial plane. If @ = 0, then
Schwarzschild’s point-like singularity 1s recovered. If a # 0 the singularity 1s not

necessarily in the future of all events at » < r;™: the singularity can be avoided by

some geodesics.

Rotation
axis

| .
fnner Borizop

J/Ri.ng : : : AP
singularity i

Antiverse



The Kerr singularity

timecorientation

ringsingularity
~ -~

venthorisons

———— ergosphere




Kerr space-time

Event horizon Event honzon




. 1/2
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( 2M?2 — a2c? cos? H) .

igi—uj:(,u — a?cos? 9)1/“

satic limj,

jwhm e
ergosphere




Ergosphere

Event horizon r=r*

Event horizon r=r"

Ring singularity

Stationary limit
surface (infinite
" redshift surface) S*

Infinite redshift
surface S~

dt -
1+2z= d—T = (900) 1/2‘ Symmetry axis (6 =0)

Ergosphere

goo = 0.




Ergosphere

If a particle itially falls radially with no angular momentum
from infinity to the black hole, it gains angular motion during the
infall. The angular velocity as seen from a distant observer 1s:

dp (2GM /c*)ar

rl)=—=—"5-—-"""""5—
(r,0) dt (r2 +a2¢c—2)2 —a2¢2A sin® 6




The ergosphere

= Region between horizon and static limit
= Nothing can remain stationary in the ergosphere

. on 3

Must rotate in direction of BH spin
because
BH spin “drags space” along with it

aka:

“dragging of inertial frames”™

“Lense-Thirring effect”

Orbits of objects
near black hole



Why “ERGOSPHERE”?

= “ERGO” = ENERGY

All the spin energy of a black hole resides outside the horizon!!
it can all be extracted (... in theory)

For maximal Kerr hole with mass M:

SPIN ENERGY = 29% of Mc?

Two famous energy extraction schemes:

Penrose Process: particle splitting inside the ergosphere

Blandford-Znajek Process: BH spin twists magnetic field



Penrose process

Recovered t
fragment , + Rotation

% axis
I
|
D

Static

P Lo

Horizon
; X Captured
fragment
Drsinteg*atlon

Initial
« projectile

Ergosphere

A particle following a geodesic that enters the
ergosphere under some specific
circumstances can decay into two particles A
and B inside the ergosphere. The ingoing
particle has an energy E which is equal to po
at infinity.

This particle decays into two particles A and
B, with energies Ea and Eg: E = Ea+Eg. The
decay can be done in such a way that particle
B goes through the event horizon into the
black hole, and particle A escapes from the
black hole to infinity. Because of (global)
energy conservation:

Eblack hole; initial 7 E = Eblack hole; final + Ea

Particle B, crossing the event horizon, has a
negative energy because within the
ergosphere, the sign of the killing vector ¢
changes. The black hole absorbs a negative
energy. Particle A, that goes to infinity will
gain that amount of energy because of energy
conservation: Ea > E.



outer ergosurface

event horizon

ring singularity

Cauchy horizon

inner ergosurface

ergoregion
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Closed time-like curves

Tilted Light Cones in Curved Space Permits
Reverse Time-Travel at Sub-light Speeds.

. t : Curved space alloves world
(time &x3s) line to loop back on its elf
wi‘thou} FTLta«rel./ s

; 2 Sub-light speed trawvel
ircide asequence of
titted light cones can

allcww ravel to the past

Y
(space axs)




Closed time-like curves
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Rotation of
Universe




Kerr space-time and CTCs

Event horizonr=r- . . .
Ring singulanty

Event horizon r=r~ Stationary limit
surface §°




Cauchy horizons

If CTCs are formed i1n the
immediate future of a
surface S, then S becomes
a Cauchy horizon and
global determinism fails
(predictability on the basis

of GR).

AUCHY SURFACE

spacelike
ypersurface

Spacetime

S s called Cauchy surface if every world-line (timelike curve) without
endpoint intersects once and only once the hypersurface S.

If S and S' are a Cauchy surface, the events on S' are determined

by those on S, if the law governing this spacetime is deterministic.
General relativity allows non-existence of Cauchy surfaces in certain
cases.




Rotating massive cylinders

Closed Time-Like Curve Formation Using
Rotating Cylinder Model

t
(time axis)

Forward
Direction
of Time

e e

Rotational speed must create enough
centrifugal force to balance the
gravitational forces of the cylinder to
prevent collapse or explesion.

Near the cylinder the
s pace time curvature
s strong enough to tip
light cones more than

95 degrees. w

In this curved space a
sub-light speed spiral
path is possible
allowing travel
backwards into time

Exit in

#’ the past

Direction of
Rotation

Y

{space axis)

Far fromthe cylinder
space-time & normal
as illustrated by the
“un-tipped’ light
cone to the right.

Sub-light speed can
only resultin travel in
a positive time (+1)
direction.
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Reissner-Nordstrom black holes

The Reissner-Nordstrom metric 1s a spherically symmetric solution of Einstein
field equations. However, it 1s not a vacuum solution, since the source has an
electric charge O, and hence there is an electromagnetic field.

Electric Nonrotating
field lines black hole

Point
charge
Icharge = 2.5 I'sch g Fcharge = 1.5 I'sch Icharge = 1.05 rsch



Reissner-Nordstrom black holes

The solution for the metric is given by
ds? = A?dt* — A7 tdr? —r2dQ? (195)

where ) )
2G M /¢ q
26M/E g

r r2

A=1-— (196)

In this expression, M is once again interpreted as the mass of the hole and

GQ?
deqct

q (197)

is related to the total electric charge Q.

The metric has a coordinate singularity at A = 0, in such a way that:

re =g + (’9% - q‘Z)l/Q.




For 7 =g, we have an extreme Reissner-Nordstrom black hole with
a unique horizon at r=r,.

A Reissner-Nordstrom black hole can be more compact than a
Scharzschild black hole of the same mass.

For the case r >4, both 7+ and - are real and there are two
horizons as in the Kerr solution.

In the case =0 both »+ and - are imaginary and there is no

coordinate singularities, no horizon hides the intrinsic singularity at
r=0.



Reisner-Nordstrom black holes

Event horizon  Event horizon




Reisner-Nordstrom black holes




Reisner-Nordstrom black holes
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Reisner-Nordstrom black holes
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Reisner-Nordstrom black holes

New Universe

Wormbhole

" J[oyuLIo A\
[alrered

Universe



Reisner-Nordstrom singularity

i3 1s the charge of the falling particle
v Is the Lorentz factor



Neutral particle

The particle feels a gravitational field of variable

etfective mass | NS Q?/r

The effective mass becomes negative for

and repulsion makes the singularity time-like
(avoidable).



Kerr-Newman black holes

The Kerr-Newman
metric of a charged
spinning black hole 1is
the most general black
hole solution.

))

O
& [1- (2GMrc % — qz)Z_l]
asin”? 0! (2GMrc* — ¢*)

2 2

(rF +a’c ?)* —a’c *Asin* 0]X 'sin” 0

2 2 2 2
r+ac “cos° 6

A=r-2CMc’r+ac’+q

r—1Iy

The Kerr-Newman
solution 1S a non-
vacuum solution. It
has two horizons, and
it presents an
ergosphere.

gudt’ +2gip dtdy — gy d* — TA™ dr’ — Zd6*




Kerr-Newman black holes

,il)ut _ (;1\[(3_2 + [(CTYA[C_Q)Q _ (12(_:_2 —q ]1/2.

1'{1““ = GMc 2 — [(G’ﬂ[('_z)“2 —a?c7? — (12]1"’/2.

The Kerr-Newman metric represents the simplest stationary,
axisymmetric, asymptotically flat solution of Einstein's equations in the
presence of an electromagnetic field in four dimensions. It 1S sometimes
referred to as an "electro-vacuum’' solution of Einstein's equations. Any
Kerr-Newman source has its rotation axis aligned with its magnetic axis.




Kerr-Newman black holes: ergosphere

ergosphere




Kerr-Newman black holes




Kerr-Newman black holes

MHD Wind Zone
° -<——Vacuum Electrodynamic Sheath

Q, =208 sec”’
Null Line
R0

Zone of
Plasma P >0 Closed Dead
Horizon & Field Lines

*-Q

Null Line
Semi-Vacuum p =0
GJ~

Region

MHD Wind Zone




Fields around the ring
singularity

Figure 13.  Magnetic field of a Kerr-Newman source. See text for
units. From Pekeris & Frankowski (1987).

Figure 14, Electric field of a Kerr-Newman source. See text for units.
From Pekeris & Frankowski (1987).




Kerr-Newman black holes

Asymptotic
MHD

Wind
Zone

Punsly 1998
Punsly, Romero, et al.
2000

Outgoing
MHD Wind

Entrained Electrons

MHD Wind from ISM
Zone

Zone of Closed Dead




Regular black holes

= A regular black hole has no essential singularity.

= They can result if the collapse 1s stopped inside the event
horizon.

= Possible causes: repulsive gravity, de Sitter interior, special
equation of state, quantum gravity effects.



Regular black holes
m I/n
pr(p)=[a—(a+1>( £ ) ]( p) p.
Pmax Pmax

The maximum limiting density pnax 1S concentrated in a region of radius

|
ro=_| :
G Pmax




Regular black holes

At low densities p, o« pltl/7 and the equation reduces to that of a

polytrope gas. At high densities close to p. . the equation becomes
p,.—p, and the system behaves as a gravitational field dominated by a
cosmological term in the field equations.

Pr(p)=[a—(a+1)(L) ]( & )p.
pmax pmax



Regular black holes

ds? = —B(r)dt* + (1 _2m({r)

r

—1
) dr® +r*(d6* + sin® 0d¢?),




Regular black holes

Outside the body p —0, and the metric becomes Schwarzschild
solution for R, = 0. When » —0, p = p_.. and the metric

becomes of de Sitter type:




Regular black holes

There 1s no singularity at » = 0 and the black hole is regular. For
0 <7r» < 1| it has constant positive density pmax and negative
pressure p. = —p.... and space-time becomes asymptotically de

Sitter 1n the imnermost region. It might be speculated that the
transition in the equation of state occurs because at very high
densities the matter field couples with a scalar field that
provides the negative pressure.



Mimickers

Mimickers result if the collapse if stopped just outside the event horizon.
Then a bounce can occur. If the bounce 1s sufficiently close to the horizon,
the gravitational redshift would induce a time dilation such that for an
observer in the infinite the collapse object would be not any more dynamical
on timescales of the age of the universe, and for all practical purposes it
would behave as a black hole.

i~ Proper Time of
Infalling Particle
T

Lines of constant
Schwarzschild
. Coordinate t

Schwarzschild Coordinate t

Péerez & Romero (2016)



